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Understanding the prevalence of coronavirus infections is important for understanding and respond-
ing to the trajectory of the outbreak. Unfortunately, the tendency to test the sickest people and the
variation in testing rates across geographic areas makes it difficult to credibly estimate prevalence.
While large-scale randomized testing is ideal, it is very expensive and imperfect compliance can
make it vulnerable to non-response bias. This paper explores how to estimate prevalence using
first-stage instruments that affect the probability of being tested but not the outcome of the test.
First-stage instruments are indispensable when evaluating randomized testing with less than perfect
compliance. They also can improve inference based on location-based testing.
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Introduction

Understanding the prevalence of coronavirus in specific areas can inform policy decisions about stay-
at-home orders and can help us predict future demands on the medical system. However, rates of
positive tests are unlikely to be directly informative. Not only do testing rates vary substantially
across time and regions, but the tests are almost always given to unrepresentative subsets of the
population.

Dealing with the non-response in testing is, therefore, a central task when estimating prevalence
from test results. Some efforts to estimate prevalence have assumed that differences between those
tested and not tested can be completely explained by demographic factors such as age and ethnicity
(Bendavid et al., 2020). If this assumption is true, non-response is “ignorable” and weighting or
similar measures will adjust for non-response in expectation.

Unfortunately, it is highly likely that non-response in coronavirus testing is “non-ignorable,”
meaning that sick people are more likely to be tested, even after controlling for demographic
characteristics.

The ideal way to overcome non-ignorable non-response problems is to implement randomized
testing. However, randomized testing is expensive and compliance is likely to be imperfect. One
sign of the difficulty of randomized sampling is the paucity of such efforts despite the unprecedented
global focus on the pandemic (Mostashari and Emanuel, 2020).

This paper discusses a complementary and potentially alternative approach to full-scale ran-
domized testing. The approach is based on using first-stage instruments (FSI) which are variables
that affect the probability someone is tested but do not directly affect or predict whether or not that
person is sick. Under a broad range of conditions, these instruments are required for statistically
identifying prevalence (Miao, Ding and Geng, 2016; Wang, Shao and Kim, 2014; Sun et al., 2017;
Marden et al., 2018).

With the proper instrument, the FSI approach enables the estimation of population prevalence
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even when the sample is decidedly unrepresentative. This paper focuses on two applications of the
FSI approach.

First, the FSI approach is indispensable when analyzing full-scale randomization with imperfect
compliance. Suppose, for example, a city identifies a random sample of 1,000 people to test but
that only 500 actually submit to tests. Authorities should, quite reasonably be nervous that this
sample could be either a healthier or less healthy subset of the full random sample, rendering the
results subject to bias, the efforts to randomize notwithstanding. If authorities implemented a
FSI strategy, however, they could estimate prevalence even with this potentially unrepresentative
sample.

Second, the FSI approach can also enable prevalence estimation based on location-based testing.
In particular, one could imagine local public health workers testing people at a given medical facility
or a blood drive (Janes, 2020) or a retail location in an effort to ascertain trends in the community.
The selection issues are more challenging than with random sampling with imperfect compliance,
but given the right protocols community-wide prevalence can be identified under plausible condi-
tions. Such location-based testing would likely cost much less than full-scale randomization and
would be possible to conduct on a rolling basis over time.

This paper proceeds as follows. Section 1 discusses the challenge of estimating prevalence in
terms of a non-ignorable missing-data problem. Section 2 discusses the merits and limits of the
more widely recognized approaches to dealing with non-ignorable non-response, randomized testing
and bounds. Section 3 describes how first-stage instruments enable the estimation of prevalence
even when testing propensity is related to health status with a focus on the case of randomized
testing with imperfect compliance. Section 4 discusses how the FSI logic could inform location
based testing. Section 5 discusses the FSI approach in light of more general functional forms.

Section 1: Epidemiological Testing as a Non-Ignorable Non-Response Problem

We begin with a standard two-stage model for testing. The propensity to be tested is

R∗
i = γ0 + γ1Xi + τi

where γ1 is 1xk parameter vector, Xi is a kx1 vector of covariates and τi is a mean-zero random
variable. We observe i’s test results if R∗

i > 0.
The outcome of interest, Yi, is whether person i has the coronavirus. Yi = 1 if Y ∗

i > 0 where

Y ∗
i = β0 + β1Xi + εi

The correlation of εi and τi is ρ. Prevalence is a function of the β parameters. For example, if
ε is normally distributed, estimated prevalence would be the average of Φ(β̂0 + β̂1Xi) across the
population values of Xi where Φ() is the CDF of a normal distribution.

We observe Yi|Ri=1, the test results for those who got tested.

Ignorable non-response

There are two sources of non-response. First, it is possible that non-response can be fully explained
by measured demographics such as age, gender and education. This non-response is referred to as
“ignorable” non-response because conditional on the correct covariates, this non-response can be
ignored without causing bias. Relatively simple models fully account for this kind of non-response,
including the weighting models commonly used in survey research.

A high profile study of COVID-19 antibody seroprevalence in Santa Clara County, California
relied on weights to account for non-response (Bendavid et al., 2020). In this study, researchers
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recruited participants with targeted Facebook ads. Response was voluntary and there was no
randomization at any stage of the recruitment.

The sample of 3,330 people who were tested was demographically unrepresentative of the county:
63% of the sample was female (compared to 50% of the in population in the county); 8% of the
sample was Hispanic (compared to 26% in of the county population) and 19% of the sample was
Asian (compared to 28% in the county) (Bendavid et al., 2020, 5).

The researchers used weighting to adjust for the unrepresentative sample, a decision that had
considerable effect on their conclusion. In the unweighted data, prevalence was 1.5 percent. After
weighting, the estimated prevalence almost doubled, to 2.81 percent.

For weighting to be valid, the non-response needs to be ignorable. That is, conditional on
covariates, the distribution of disease in the sample is the same as in the population. This is a
general statistical concept that manifests itself in a simple conceptual test. For any given group
(or combination of observed covariates), are the people in the sample a random sample of the
population? That is, are the Hispanic respondents in the Santa Clara County data a random
sample of all Hispanics in the county? If this is true for all groups, then weighting will produce an
unbiased estimate of county prevalence.

However, as pointed out by many commentators on the article, the Santa Clara sample may
have differed from the underlying population not only in terms of observable characteristics such as
age, race, gender and zip code, but also in terms of unobserved characteristics such as health status.
It is quite possible, for example, that those more likely to be sick were more likely to respond to
the Facebook ads.

The authors acknowledge these potential biases (“Other biases, such as bias favoring individuals
in good health capable of attending our testing sites, or bias favoring those with prior COVID-like
illnesses seeking antibody confirmation are also possible.” (Bendavid et al., 2020, 7)), but were
not deterred from concluding that their “prevalence estimates of 2.49 percent to 4.16 percent are
representative of the situation in Santa Clara.”

Non-ignorable non-response

The more insidious version of non-response occurs when non-response is related to the outcome the
test is trying to measure. This is referred to as “non-ignorable” non-response because we cannot
simply re-weight the data to account for this type of non-response.

Papers focusing on non-ignorable non-response in epidemiology include Marden et al. (2018),
Sun et al. (2017), Wang, Shao and Kim (2014) and Miao, Ding and Geng (2016). Papers fo-
cusing on non-ignorable non-response in survey research include Bailey (2019) and Peress (2010).
A foundational paper in this literature is Heckman (1979). Vella (1998) reviews applications in
economics.

Meng (2018) provides a unified framework for thinking about non-response, establishing among
other things that bias is a function of an interaction between the extent of non-ignorability in non-
response and the extent of non-response. When a sample is small relative to the target population,
a small amount of non-ignorable non-response can produce more bias than a large amount of
non-ignorable non-response from a sample that is a larger proportion of the overall population.

Non-response in virus testing is likely to be non-ignorable because those getting tested are more
apt to be sick. Hence, as is widely recognized, the observed rates at which people test positive for
the coronavirus are not indicative of the actual infection rates in the population.

Figure 1 shows an example. The prevalence is 20 percent. However, those getting tested are
more likely to be sick (ρ = 0.6), producing a situation in which the tested population has a 60
percent chance of testing positive.
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Figure 1: Test results do not reflect prevalence in population

Similar problems arise in other contexts such as HIV testing where people’s willingness to test
may be affected by their HIV status (Marra et al., 2017; McGovern, Canning and Barnighausen,
2018).

Two problems arise when testing non-response is non-ignorable. First, testing becomes less
informative about prevalence as the relationship between the probability of getting a test and the
probability of being ill increases. Figure 2 shows the relationship between prevalence and observed
positive test results when 10 percent of the population is tested and the errors are assumed to
follow a bivariate normal distribution with various levels of ρ, the correlation in errors in the two
equations.

The blue line at the top of Figure 2 shows the relationship between actual and observed test
results when the propensity to get tested is strongly related to the propensity to be sick (ρ = 0.9).
Point A indicates that for this level of ρ, the test results will be positive 60 percent of the time
when the prevalence in the general population is 8 percent.

The red line in Figure 2 shows this relationship when there is a weaker (but still strong)
relationship between getting tested and being sick (ρ = 0.6). Point B indicates that for this level
of ρ, the test results will be positive 60 percent of the time when the prevalence in the general
population is 20 percent. When there is no relationship between getting tested and being sick
(ρ = 0), a 60 percent positive test rate is simply associated with a 60 percent prevalence (point D).

Looking at the lines for various values of ρ, it is clear that the disconnect between observed test
results and population prevalence is larger when ρ is higher.

Identification problems

A second problem is more daunting for those trying to model prevalence: the model is generally
unidentified, meaning that multiple combinations of parameters can explain the data equally well
(Miao, Ding and Geng, 2016).

We can see the essence of the identification problem in Figure 2. The points labelled A, B,
C and D all explain the observed outcome of 60 percent positive tests equally well. That is, a
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prevalence of 8 percent with a ρ of 0.9 (point A) explains the data as well as a prevalence of 60
percent with a ρ of 0.0 (point D).1
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Figure 2: Relationship between general prevalence and test results for various levels of ρ

The identification problem is exacerbated by differences in testing rates. Figure 2 showed a
situation in which the testing rate was 10 percent. However, as testing rates change, the mapping
of results back to prevalence becomes more complex and depends on ρ. Given substantial differences
in testing rates across regions and across time, this makes it impossible to treat information such as
positive percent rates as either directly informative about prevalence or comparable across regions
without knowing ρ.

Figure 3 illustrates how testing rates and identification problems interact. In the top panel,
expected rates of positive tests (out of those being tested) is plotted as a function of prevalence for
two testing regimes for ρ = 0.7, an environment in which sick people are much more likely to be
tested. The blue line on the top is for a low testing regime in which only 1 percent of the population
is tested. As one would expect, when tests are rare and sick people are more likely to get tested,
the positive test rate is quite high. Point A indicates prevalence is 2 percent when the expected
positive rate is 40 percent and 1 percent of the population for ρ = 0.7.

The red line in the top panel of Figure 3 plots the positive test rate for a regime in which
testing is vastly expanded (to 20 percent of the population). While the positive test rate is still
much higher than the prevalence, it is lower than when 1 percent were being tested as many more
people are being tested. Point B in the top panel of Figure 3 indicates that prevalence is 5 percent
when the expected positive rate is 20 percent and 20 percent of the population is tested.

In the scenario depicted in the top panel of Figure 3, it is actually bad news to observe the
positive test rate falling from 40 percent to 20 percent when we increase the testing percent from
1 to 20 percent. That is, going from point A to point B suggests that prevalence has gone from
2 percent to 5 percent, even as the positive test rate has fallen markedly. In order to infer the
prevalence is the same or falling, the increase in testing would need to produce a positive rate lower

1Instead of using the percent of tests that are positive as input data, some media reports report the number of
positive tests as a percentage of total population. This measure is flawed as it so directly is affected by testing rates.
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Figure 3: Relationship between general prevalence and test results for various levels of ρ and testing
rates

than that indicated by point C, which is about 10 percent. In other words, when the sick are much
more likely to be tested, increasing testing needs to lead to a dramatic fall in positive test rates in
order to suggest a fall in prevalence.

The lower panel of Figure 3 shows a similar plot but for a situation in which the relationship
between testing and being sick is much lower (ρ = 0.3).

In this bottom panel, point A indicates that the expected positive rate is 40 percent when
prevalence is 15 percent, 1 percent of the population is tested and ρ = 0.3. Compared to the top
panel, there is a weaker relationship between being sick and testing and a given positive test rate
is associated with a higher prevalence.2 Point B indicates that the expected positive rate is 20
percent when prevalence is 10 percent and 20 percent of the population is tested.

In the scenario depicted in the bottom panel of Figure 3, a drop from 40 percent positive rate
to a 20 percent positive rate is good news. That is, going from point A to point suggests prevalence
has fallen from 15 percent to 10 percent. When ρ = 0.3 any drop below the point indicated by
point C (27 percent positive rate) is consistent with a fall in prevalence.

While the scenarios underlying Figure 3 may be somewhat extreme, the underlying problem
pervades any effort to translate positive test rates into prevalence estimates when non-response is
non-ignorable and testing rates vary.

The problem is not necessarily insurmountable, however. In Figures 2 and 3, knowing ρ would
allow us to map observable test percentages back to prevalence in light of testing rates. Therefore,
identifying methods that can account for ρ is a crucially important step in estimating prevalence
when non-response is non-ignorable.

This information could be used to create concordance tables that could allow comparison im-
plied prevalence given positive test rates for different testing environments. Appendix 2 provides
examples for case of bivariate normal errors and two different values of ρ.

2In the limit, when ρ = 0 the positive test rate is, in expectation, the prevalence.
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Section 2: Standard Approaches to Accounting for Non-Ignorable Non-Response

There are two widely recognized approaches to accounting for ρ when there is non-ignorable non-
response. The first is to structure the data so as to guarantee that ρ = 0 in expectation. This is done
via fully randomized testing (Mostashari and Emanuel, 2020; Ioannidis, 2020). In fully randomized
testing everyone in a target population has an equal probability of being tested regardless of health
status and the observed proportion of people testing positive will on average equal the community
prevalence. In terms of Figure 2, randomization ensures that ρ = 0, which in turn identifies the
observed prevalence as an unbiased estimate of the actual prevalence.

Such efforts are rare, but not unheard of. Iceland, for example, recently randomly identified
6,782 Icelanders between the ages of 20 and 70 to be tested (Gudbjartsson et al., 2020). Many
other regions are considering or beginning implementation of such programs.

A fully randomized testing program is difficult. In the short term for any given outbreak
it is likely that test kits may be in high demand and medical professionals may be unavailable.
Hopefully, this problem will become less relevant over the course of a pandemic.

Two more fundamental problems limit reliance on full-scale randomization. The first is that
compliance is a challenge as not everyone chosen to be tested will in fact submit to a test. It is
hard to reach everyone selected to be tested and it is quite plausible that people will vary with
regard to their willingness to be tested, perhaps because of varying levels of trust of outsiders or
concern about health or other commitments in their life.

In the Iceland study, for example only 33.7 percent of those randomly chosen to be tested
had actually been tested as of publication of their analysis (Gudbjartsson et al., 2020, 2). The
techniques discussed below can be used to address non-compliance in randomized sampling.3

Non-compliance is a potentially serious problem. In the Iceland study, it is possible that sickest
third of randomly target people showed up to be tested. In that case, the estimate would be an
obvious overestimate. Or, it is possible that the healthiest third showed up, rendering the results
a clear underestimate.

As a general matter, the observed prevalence in a sample will be biased if compliance is less
than 100 percent and ρ 6= 0. Hence, at a minimum, any random sample based testing protocol
should test whether ρ = 0, something that requires a first-stage instrument as discussed below.

Randomized sampling is not only subject to non-ignorable non-response, it is also expensive.
Prevalence surveillance requires not just a single national test for a given time period, but ongoing
assessment from week to week in many locales. It may simply be too costly for many locales to
carry out high quality fully-randomized studies for each time period of interest. Hence, expanding
the testing toolkit to include methods that are less costly, but still useful in the presence of non-
ignorable non-response is very important.

A second approach to dealing with non-ignorable non-response is to calculate bounds that do
not depend on assumptions about ignorability or parametric assumptions. The generality of this
approach makes it very attractive.

While bounds are very attractive theoretically, they may not always be useful practically. Man-
ski and Molinari (2020) apply bounds analysis for high impact regions in early April 2020 and find
that infection rates are bounded between 0 and 50 percent for Illinois and New York and between
0 and 64 percent for Italy.

3Identifying the appropriate sampling frame may be difficult as well. In the Iceland study the sampling frame
seems unbalanced for reasons that are unclear as only 41 percent of those invited were male.
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Section 3: First-stage Instruments

As a general matter non-ignorable non-response models do not work when the same variables are
used to explain whether someone gets tested and the result of the test. In other words, non-ignorable
non-response models generally require that we must have at least one variable that explains whether
people get tested and does not explain whether they test positive.4

One of the insights of recent epidemiological research is that prevalence can be estimated with
data short of a full-scale randomization (Sun et al., 2017; Wang, Shao and Kim, 2014; Miao, Ding
and Geng, 2016). Specifically, if we have data that predicts testing propensity but not health status,
then prevalence is statistically identifiable under a broad range of assumptions.

Without instruments, we have an identification problem as illustrated in Figure 2. With first-
stage instruments, we are able to pin down the value of ρ, which in turn allows to hone in on the
correct prevalence.

The appendix explains the intuition in detail for a specific parametric model, but the general
idea is relatively simple. The existence of a first-stage instrument implies that there are high and
low probability of being tested groups. If ρ > 0, the propensity to be tested is related to the
outcome of the test. The low probability group in this case would have a high probability of testing
positive. The high probability group will include not only the types who would have gotten tested
if they had been in the low probability group, but also a group of people who would not have
gotten tested in the low probability group. If ρ > 0 these people will have lower probability of
testing positive because they have a lower propensity of being tested. Hence, the difference in the
proportion who test positive across these two groups is informative about the value of ρ.

A metaphor may be helpful. Imagine a hospital with two doors. Two hundred people show up
in order of how sick they are (with the most sick people showing up first). They line up at these
two doors, with the choice of doors being completely random. The people did not know this when
they lined up, but it turns out that the first 20 people at door A are tested and the first 80 people
at door B are tested. If the proportion who are sick from these two groups is the same, then we
have evidence that eagerness of getting tested is not related to actually being sick (which suggests
ρ = 0). That is, if door B keeps getting the same positive rate even though they are getting a
portion of the population who was less eager to be tested than the door A group, then eagerness
of being tested does not seem to be related to the probability of testing positive.

On the other hand, if there is a much higher proportion of people testing positive at door A
than at door B, then we have evidence that eagerness to get tested is related to testing positive.
The specific difference in proportions of positive tests at the two doors will be a function of ρ. In
general we have seen this as the percent who test positive has declined as the number of tests has
increased.

The exact steps to estimating prevalence depend on model assumptions. This section focuses
on a baseline case in which there is a first-stage instrument and in which the errors in the response
and outcome equations are bivariate normally distributed. This approach has been used previously
to estimate, among other things, HIV prevalence (Barnighausen et al., 2011) and public opinion
(Bailey, 2019). In a later section I discuss more general modeling approaches.

The model is as follows.
R∗

i = γ0 + γ1Ti + τi

4Due to the non-linearity of the equations, a selection model that assumes the errors are distributed bivariate
normally can be identified without a first-stage instrument. As a practical matter, models relying only on functional
form perform poorly (Bailey, 2019; Puhani, 2000; Stolzenberg and Relles, 1997). Miao, Ding and Geng (2016) and
Sun et al. (2017) discuss additional identification conditions even when a first-stage instrument exists.
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where τi is a mean-zero random variable and Ti is the first-stage instrument. For simplicity, we
assume γ1 > 0 and that there are no other covariates. (Adding covariates typically enhances
precision.) We observe i’s test results if R∗

i > 0.
As before, the outcome of interest, Yi, is whether person i has the coronavirus. Yi = 1 if Y ∗

i > 0
where

Y ∗
i = β0 + εi

The key characteristic of the first-stage instrument, Ti, is that it has no direct effect on Y.
First-stage instruments come in two flavors. First, they may be observational. For example, it

is possible that we believe that distance to a testing site affects whether someone is tested but does
not directly affect whether someone has the disease. This resembles the use of distance to hospitals
as an instrument to identify the effect of neonatal intensive care units, for example (Lorch et al.,
2012).

In general, such observational first-stage instruments are rare and subject to doubts about the
assumption that they are unrelated to the outcome of interest. For example, it could be possible
that those living near a hospital have different infection rates, even after controlling for covariates.

The second flavor of first-stage instrument is based on a randomization. This could be treatment
that affects the probability of testing, but does not affect probability of testing positive. For
example, one could identify a random sample of people to be tested (as, for example, done in
Iceland) and then also divide these people into a group who is contacted once and a group that is
contacted multiple times. Being in the multiple contact group will not directly affect the likelihood
of being sick but will likely increase participation, an expectation that is easily tested empirically.

This approach is extremely useful for a large-scale randomized sample approach when non-trivial
non-compliance is expected. While the extent of non-compliance is an empirical question and may
vary from place to place, recent experience with survey research indicates that it can be very hard
to get people to respond when they are randomly chosen to participate in a study (Kennedy and
Hartig, 2019; Dutwin and Lavrakas, 2016). Contact tracers have, at least in some places, been
frustrated by response rates lower than 50 percent (Siegel, Abdelmalek and Bhatt, 2020).

Estimation for 3 states

To illustrate the estimation process, I simulate data and then use the model discussed above to
estimate prevalence for three hypothetical states.

We assume for that each state has identified a random sample of 3,000 for testing. We also
assume a reasonably strong relationship between the testing and outcome equations (ρ = 0.7).

The states vary across several dimensions. State 1 has a prevalence of 0.1 with a baseline 50
percent response rate for random testing. State 2 has a prevalence of 0.2 with a baseline 30 percent
response rate for random testing. State 3 has a prevalence of 0.3 with a 30 percent response rate
for random testing. The response rates are chosen to be roughly in line with Iceland’s experience
with randomized testing.

State Prevalence Baseline response rate Testing approach
State 1 10% 50% First-stage instrument
State 2 20% 30% First-stage instrument
State 3 30% 30% No randomization

Importantly, states 1 and 2 implement a first-stage randomization protocol such that 20 percent
of those selected initially (those for whom Ti = 1) are subject to more extensive outreach such that
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they have 20 percentage point higher probability of being tested. Since these treatment groups are
randomly chosen, these increases in teseting propensity are unrelated to individual health status.
State 3 does no such randomization.

Given the assumptions of the model, we estimate prevalence using the following information:

• Data on whether someone got tested (Ri)

• Data on test results for those who got tested (Yi|Ri=1)

• Data on whether someone was in the treatment group that had a higher probability of getting
tested (Ti)

Figure 4 shows the results based on 50 simulations for each state.5 The blue bars in the panel
on the left show the observed positive rates among those tested. The thick red line shows the
prevalence in the state and the black lines show the range from the minimum to the maximum
across the simulations. This panel illustrates the widely recognized point that positive test rates
are not informative about prevalence when sick people are more likely to be tested.

The blue bars in the panel on the right in Figure 4 show estimated prevalence results using the
estimation approach outlined here. Again, the thick red line shows the prevalence in the state. The
black lines show the range from 5th to 95 percentile of prevalence estimates across the simulations
for each state.

The prevalence estimates for states 1 and 2 are, on average, quite accurate. In state 1 the blue
bar shows that the average prevalence estimate across the simulations is 10.7 percent, which is
close to the true prevalence of 10 percent. In state 2 the average prevalence estimate across the
simulations is 20.03 percent, which is the very close to the true prevalence.

The estimates are, like any statistical measure, noisy. The prevalence estimates range from 9
percent to 14 percent for state 1 and from 15 percent to 25 percent for state 2. But the estimates are
always better than using the raw test result data and on average are quite accurate. The accuracy
of the estimates can be increased by increasing the sample size, the size of the treatment group or
the magnitude of the effect of the randomization on the probability of being tested.

State 3 presents a very different story. Recall that for state 3 there is no randomization that
affected the propensity to show up for testing. The blue bar shows that the average estimate
of prevalence for state 3 is 48 percent, far from the true value of 30 percent. And the range of
estimates is large: from 18 percent to 89 percent. The poor estimate for state 3 occurs because, as
illustrated in Figure 2, the observed test results can be explained by many different combinations
of ρ and prevalence when there is no variable that affects the decision to test, but not the results
of the test. In statistical terms, the model is essentially unidentified for state 3.

The practical implications for randomized testing efforts are clear and can be summarized as
follows.

• Estimating ρ is imperative. If not everyone randomly selected to be tested actually gets
tested, it is clearly unwise to simply analyze the data as if we knew ρ = 0. As we saw in
Figures 2 and 3, prevalence estimates generated if we assume ρ = 0 may be far from the true
prevalence estimates if ρ 6= 0.

• It is generally infeasible (and highly imprecise at best) to estimate ρ without a first-stage
instrument.

5I use maximum likelihood via the optim function in R (for the likelihood, see, e.g., Dubin and Rivers (1989)).
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Figure 4: Results for three states in the simulation study

• Implementing a first-stage instrument is not difficult and adds relatively little cost to a ran-
domization effort as it involves randomizing the selected sample into low and high contact
groups, on the (easily testable) assumption that the high contact group will be more likely to
respond.

Section 4: Location-based testing

Adding a first-stage instrument to large-scale randomized testing is effective, but may still be quite
onerous for many locales which do not have the resources to implement such testing once, let alone
across multiple time periods. From a policymaker’s perspective, a more attractive approach to
sampling would target some population that has already shown up at some location. For example,
one could imagine policymakers implementing a testing program for people who show up at a given
medical facility or a retail store or government office.

This approach creates clear challenges for estimation of population prevalence as the type of
people who show up at any one of these locales is likely unrepresentative of the broader population
in many respects, including most importantly in terms of their propensity to be sick.

This section explores if and when first-stage instruments may enable generalization from such
testing protocols. This is both a constructive and critical exercise. We present a reasonable model
in which generalization is feasible and also present a more general statement of how first-stage
instruments can enable identification of prevalence and discuss the limits to such an approach.

Testing at a Medical Facility

In the first model we consider, we add another selection stage to the model consider so far. That
is, suppose that there is an initial selection stage in which people decide to go to the hospital based
on their perceived symptoms, which we label τi. The latent propensity to appear at the hospital is

H∗
i = κ0 + τi
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We observe Hi = 1 if H∗
i > 0, which implies that Hi = 1 if τi > −κ0.

At the hospital, patients are randomly divided into treatment (Ti = 1) and control (Ti = 0)
groups. Whether someone is tested is determined by a latent propensity, similar to the equation
used earlier:

R∗
i = γ0 + γ1Ti + τi

where τi is a mean-zero random variable and Ti is the first-stage instrument. As before, we assume
γ1 > 0 and do not include other covariates for simplicity of exposition. We observe i’s test results
if R∗

i > 0.
The randomization could be literally based on a random process or based on an essentially

random process. Suppose, for example, there are two triage nurses and that patients see whomever is
available next. If triage nurse 1 orders tests rarely while triage nurse 2 orders tests more aggressively,
we would have a pseudo-randomization that affects propensity to be tested, but does not directly
predict health status.

Importantly, we assume for this model that the error in the hospital equation is the same error
that affects propensity to be tested. Going to the hospital and being tested are two separate
processes, but the underlying symptoms and personality characteristics drive both.

Because the proportion of people who show up at the hospital is (by necessity) greater than or
equal to the proportion tested, γ0 ≥ κ0. Combining this fact with γ1 > 0, the Hi = 1 requirement
is not binding because any τi > −γ0 − γ1Ti (the condition for Ri = 1) will also be larger than −κ0
(the condition for Hi = 1). This implies that the model looks quite similar to the model without
the hospital step as the key condition for getting tested remains Ri = 1 if τi > −γ0 − γ1Ti.

It is straightforward to incorporate these elements into a maximum likelihood model. There
are four types of observations: {H=0}, {H=1, R=0}, {H=1, R=1, Y=0}, {H=1, R=1, Y=1} and
the likelihood for each is well defined and identified given the model. Simulations similar to what
was presented earlier provide results that again appear unbiased and reasonably precise.

The reason we can estimate prevalence in this model is that the difference in observed positive
test rates among the treatment and control groups is informative about ρ. As we have seen above,
estimating ρ facilitates identification of prevalence.

More general considerations regarding location based testing

The above model leveraged an assumption that the processes of showing up at the hospital and
getting tested were both driven by a common factor of individual level symptoms.

Such a model does not describe much of the testing being undertaken. For example, the Centers
for Disease Control and Prevention is planning to test 325,000 people in 25 metropolitan areas at
blood donation centers by the fall of 2021 (Janes, 2020). The state of New York tested 15,000
people at grocery stores and community centers in April (Cuomo, 2020).

It is quite likely that the processes the lead people to show up and agree to testing at these
sites produce samples that are unrepresentative not only demographically, but also in terms of
their propensity to be (or have been) sick. To the extent this happens, we cannot be confident in
generalizing from the results to the general population.

One rejoinder is that such as approach could at least provide a fixed tracking point allowing
researchers to identify trends in infection rates, at least for the subpopulation who shows up at
these locations. However, this is only true if ρ, the relationship between being sick and propensity
of being tested, is constant over time. This could be true, but need not be as, perhaps, over time
sick people become more (or perhaps less) likely to show up at these sites. Without building in
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a capcity to assess ρ we cannot be sure if changes in infection rates are due to population level
changes or to changes in who shows up at the testing sites.

A FSI approach in this context can enable researchers to assess – and therefore account for
– ρ. The approach would be relatively straightforward to implement: testing authorities would
pick a random subset of the population to encourage to visit the testing site. Perhaps this would
simply be a text message, email, phone call or letter. Or perhaps the encouragement could include
payment or a coupon. The key is that there would be an identifiable group for who the probability
of visiting the testing site is higher for reasons unrelated to their propensity to be sick.

Note that the FSI does not require, or even produce, a representative sample. Instead, the
approach allows data produced by a potentially unrepresentative sample to have the properties that
make identification of ρ possible. And, as above, having an estimate of ρ will enable estimation of
prevalence even when the sample is unrepresentative. Specifically, ρ is identified because we have
two groups: one group that shows up naturally, without encouragement (the Ti = 0 group) and
one group that includes people both people who would have shown up without encouragement and
people who were pushed from “almost” showing up to showing up by the encouragement. If this
marginal group who showed up in response to the encouragement are no healthier than those who
showed up without encouragement, we have evidence that health is not related to propensity to
test.

However, if the marginal group who showed up in response to the encouragement are healthier
than those who showed up naturally, we have evidence that propensity to test is related to health.
In the limit, if the positive test rate declines as we pull in more and more people, we have evidence
that testing is related to health status.

This approach is quite feasible as it simply involves identifying a testing location and encour-
aging a random selection of people to show up for testing in addition to testing those who are not
randomly encouraged. In this sense, the approach is a hybrid between the organically occurring
testing we currently have in most places and a full-scale randomized test, something that will likely
be much cheaper than a full-scale randomized test with near perfect compliance.

There are also reasons to be cautious about this approach. The estimate of ρ is “local” in
the statistical sense in that it is estimated only for those for whom the testing encouragement is
sufficient to push from not testing to testing. It is possible that the relationship between testing
propensity and health status is different for different groups.

However, the results can be useful even in light of this concern. First, they can be treated as a
test of whether ρ 6= 0 for any subgroup. It is possible to rejecting this null hypothesis even with a
local estimate. A failure to reject the null should not be taken as broad confirmation that ρ = 0
for all possible subgroups.

Given the relative low costs, it may be possible for testing authorities to implement use this
approach to examine multiple treatments and subpopulations. If there is evidence that ρ 6= 0 for
a given testing site, it would make sense to try other types of encouragement and other testing
locations in order to get a sense of the heterogeneity in the population. Or, ideally, a full scale
randomized sample could be run concurrently (with a first-stage instrument to deal with non-
response) and results for a given location could be, at least tentatively, calibrated to the broader
results.

On the other hand, if evidence is generally consistent with either ρ = 0 or with a fixed ρ across
treatments and locations, testing authorities may be more confident in generalizing.
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Section 5: More general functional forms

So far in this paper, the conceptual discussions have been couched in general terms and the models
have been presented as an extension of the canonical bivariate normal Heckman model to the case
in which the outcome variable is dichotomous (Heckman, 1979).

Much of the recent literature on non-ignorable non-response has focused on extending the
FSI approach beyond models that assume errors are bivariate normally distributed. This section
presents an overview of this progress.

The critical point here is that all of these advances require a first-stage instrument. Once a
first-stage instrument has been built into the data collection process, these and other models can be
estimated, providing analysts with a sense of how much estimates depend on modeling assumptions.
Without a first-stage instrument, however, the only options are to use bounds (which are too wide
to be useful) or to assume away non-ignorable non-response (which is unrealistic and creates large
potential biases).

There are three major strands in the literature. First, non-ignorable non-response models with
first-stage instruments can be identified under different parametric assumptions. For example,
Miao, Ding and Geng (2016) show that a standard t distribution with degrees of freedom equal
to ν can be identified. McGovern et al. (2015) and Gomes et al. (2019) use copulas to explore a
broad range of possible joint distributions of the error terms in the selection and outcome equations,
selecting the final model based on model fit.

Sun et al. (2017) use doubly robust methods to estimate prevalence. In this approach one
formulates parametric models for the probability of response as a function of covariates and health
status and for probability of testing positive as a function of covariates and response propensity. If
either of the two parametric models is correct, prevalence can be estimated. The attraction here is
that method requires only one, but not necessarily both, of the models to be correct.

Second, Das, Newey and Vella (2003) present a nonparametric approach in which they first
estimate a propensity to respond based on the response data and then use a polynomial function
of that propensity score as a control variable for a continuous outcome variable.

Finally, first-stage instruments can improve the performance of bound estimators. Marden et al.
(2018) present an approach that uses a first-stage instrument to produce bounds on prevalence.
This approach does not produce a point estimate for prevalence or the effects of covariates, but
does provide information about presence, direction and magnitude of selection bias that does not
depend on parametric assumptions.

Conclusion

Coronavirus testing is useful for many reasons. Some of the reasons have little to do with estimating
prevalence. Most obviously, knowing if a person has corona virus can inform treatment and can
focus contact tracing resources.

Coronavirus testing as a means to understand community prevalence is important as well.
This knowledge can inform policy decisions about stay at home orders and help us predict future
demands on the medical system.

The challenge is that it is difficult to generalize about disease prevalence in the general popu-
lation from test results when those who are sick are more likely to get tested and different regions
test at different rates.

Using weights and other standard tools in survey research does not solve the problem. In
statistical terms, weights require non-response to be ignorable, something that is unlikely to be
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true for testing as implemented in most health care systems because the people being tested are
typically much more likely to sick than the population in general.

When non-response in testing is non-ignorable, there is no statistical magical bullet that will
allow us to convert the testing results we currently have into credible estimates of prevalence. We
saw, for example, that prevalence, testing rates and the degree of non-ignorability in the data
interact to produce observed positive test rates. Many combinations of those three factors can
explain the same observed test results.

Therefore, in the spirit of Rubin (2008)‘s admonition that “design trumps analysis” we need to
design our data collection to provide the information that makes analysis feasible.

The most obvious way to generate useful information for prevalence estimation is to implement
large-scale randomized testing. Ongoing randomized testing is expensive, however, making it im-
practical for many communities and time periods. In addition, such testing will potentially suffer
from non-ignorable non-response.

Large-scale randomized testing is not, strictly speaking, necessary in order to statistically
identify community prevalence. A considerable and growing body of research indicates that non-
ignorable, non-response models can estimate prevalence if we have a variable that predicts likelihood
of getting tested, but does not predict the result of a test. These randomizations can be done much
more cheaply than full-scale randomized testing, potentially allowing them to be implemented for
specific communities and time periods.

The statistical analysis of data from first-stage randomizations is not trivial and depends in
part on assumptions about functional form. But the analysis is feasible and can yield useful
information. If there is less than 100 percent response rates for a randomized testing effort, a
first-stage instrument is relatively easy to implement and produces the information necessary to
account for potential non-ignorable non-response. For location based testing, testing authorities
can use first-stage instruments to enable prevalence estimates based on unrepresentative samples
under plausible assumptions. Given the relative low cost and flexibility of first-stage instruments,
it is possible to use use multiple approaches in order to explore some of the assumptions underlying
this approach to testing.

First-stage randomizations do not solve all testing challenges. The sensitivity and specificity of
testing technology needs to be accounted for, as do the practical challenges of implementing any
testing approach. The appeal of the approach, however, is clear as they can produce data that
enables us to understand the trajectory of a disease outbreak across communities and time.

Appendix 1: Intuition

Observed positive test rates depend on correlation of errors

The top panel of Figure 5 shows the expected value of positive test rates for the treatment (T=1)
and control (T=0) groups.

• The blue line at the top shows positive rates for the control group. When ρ = 0, which implies
the sick and healthy are equally likely to be tested, the observed testing results will be the
prevalence. As we move away from this unlikely scenario and ρ increases, the observed rates
of positive tests among those tested increases as testing is relatively rare and sick people are
more likely to be tested.

• The green line in the top panel of Figure 5 shows positive test results for those tested in the
treatment group. When ρ = 0, the expected observed testing results will be the prevalence
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because those tested are still a true random sample of the population.6 As ρ rises, the positive
rates among those tested rise as well, but not as much as for the control group because the
treatment group includes people who are less sick.

The bottom panel of Figure 5 shows ∆, the difference in the expected positive rates for the
treatment and control groups as a function of the correlation of errors. Given the bivariate normality
assumption and the parameters relating to testing propensity, this rises in a predictable way.

Specifically, bigger differences in the percent positive among those tested in the treatment
and control groups are associated with higher values of ρ, the parameter that characterizes the
relationship between how sick a person is and their likelihood of being tested.
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Figure 5: Positive testing rates as a function of correlated errors

The observed difference in positive test rates is related to the correlation of errors.

Figure 6 reverses the axes from the bottom panel of Figure 5 to illustrate that for (almost) any
given difference in positive test rates among those tested in treatment and control groups, there is
a ρ that corresponds to it.

Using observed differences in positive test results for the treatment and control groups allows
us to learn about the correlation of errors which, in turn, allows us to isolate the true prevalence.
For example, if we knew ρ for the case illustrated in Figure 2, we could back out the prevalence
from observed positive test rates for most scenarios. This is true even when those getting tested
are more likely to be sick.

The explanation in this appendix is an effort to provide intuition about how small-scale random-
ization can provide useful information. The actual statistical estimation process is quite different.
In particular, the above figures depend on a specific value of prevalence, which is, of course, un-
known. In the estimation processes, the prevalence and correlation are estimated simultaneously.

6When ρ = 0 the control group will be a random sample of, say 10 percent of the population while the treatment
group will be a random sample of, say 15 percent of the population. Since both are random samples both should
produce the same average test results even though those in the treatment group had a higher probability of being
chosen.
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Figure 6: Relationship between correlated errors and observed differences in test results among
those tested

Appendix 2: Concordance tables

Table 2: Expected positive test rates for ρ = 0.7 and given testing rates and prevalence
Test Prevalence
rate 0.02 0.04 0.06 0.08 0.1
0.02 0.31 0.47 0.57 0.65 0.71
0.04 0.23 0.37 0.47 0.55 0.61
0.06 0.19 0.31 0.41 0.49 0.55
0.08 0.16 0.28 0.37 0.44 0.51
0.10 0.14 0.25 0.33 0.40 0.47

Tables 2 and 3 show the expected positive test rates that would be observed for given prevalence
and testing rate combinations given an assumption that errors are distributed with a bivariate
normal distribution.

These concordance tables should be used cautiously. The parametric assumption may not hold
and the tests used could vary in sensitivity across regions. They may, however, provide at least
a rough guide to relating test results across regions. For example, Table 2 indicates that when
ρ = 0.7, a region testing 2 percent of its population and observing 47 percent positive tests would
have the same expected prevalence (4 percent) as a region testing 10 percent of its population and
observing 25 percent positive tests.
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Table 3: Expected positive test rates for ρ = 0.3 and given testing rates and prevalence
Test Prevalence
rate 0.02 0.04 0.06 0.08 0.1
0.02 0.08 0.14 0.19 0.24 0.28
0.04 0.07 0.13 0.17 0.21 0.25
0.06 0.06 0.11 0.16 0.20 0.24
0.08 0.06 0.11 0.15 0.19 0.23
0.10 0.06 0.10 0.14 0.18 0.22
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